Optimal transport maps for distribution preserving operations on latent spaces of Generative Models
نویسندگان
چکیده
Generative models such as Variational Auto Encoders (VAEs) and Generative Adversarial Networks (GANs) are typically trained for a fixed prior distribution in the latent space, such as uniform or Gaussian. After a trained model is obtained, one can sample the Generator in various forms for exploration and understanding, such as interpolating between two samples, sampling in the vicinity of a sample or exploring differences between a pair of samples applied to a third sample. In this paper, we show that the latent space operations used in the literature so far induce a distribution mismatch between the resulting outputs and the prior distribution the model was trained on. To address this, we propose to use distribution matching transport maps to ensure that such latent space operations preserve the prior distribution, while minimally modifying the original operation. Our experimental results validate that the proposed operations give higher quality samples compared to the original operations.
منابع مشابه
Sliced-Wasserstein Autoencoder: An Embarrassingly Simple Generative Model
In this paper we study generative modeling via autoencoders while using the elegant geometric properties of the optimal transport (OT) problem and the Wasserstein distances. We introduce Sliced-Wasserstein Autoencoders (SWAE), which are generative models that enable one to shape the distribution of the latent space into any samplable probability distribution without the need for training an adv...
متن کاملRandom walks on discourse spaces: a new generative language model with applications to semantic word embeddings
Semantic word embeddings represent the meaning of a word via a vector, and are created by diverse methods such as Latent Semantic Analysis (LSA), generative text models such as topic models, matrix factorization, neural nets, and energy-based models. Many methods use nonlinear operations —such as Pairwise Mutual Information or PMI— on co-occurrence statistics, and have hand-tuned hyperparameter...
متن کاملConditional generation of multi-modal data using constrained embedding space mapping
We present a conditional generative model that maps low-dimensional embeddings of multiple modalities of data to a common latent space hence extracting semantic relationships between them. The embedding specific to a modality is first extracted and subsequently a constrained optimization procedure is performed to project the two embedding spaces to a common manifold. The individual embeddings a...
متن کاملImproving Variational Auto-Encoders using Householder Flow
Variational auto-encoders (VAE) are scalable and powerful generative models. However, the choice of the variational posterior determines tractability and flexibility of the VAE. Commonly, latent variables are modeled using the normal distribution with a diagonal covariance matrix. This results in computational efficiency but typically it is not flexible enough to match the true posterior distri...
متن کاملThe Riemannian Geometry of Deep Generative Models
Deep generative models learn a mapping from a lowdimensional latent space to a high-dimensional data space. Under certain regularity conditions, these models parameterize nonlinear manifolds in the data space. In this paper, we investigate the Riemannian geometry of these generated manifolds. First, we develop efficient algorithms for computing geodesic curves, which provide an intrinsic notion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.01970 شماره
صفحات -
تاریخ انتشار 2017